A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom.
نویسندگان
چکیده
PURPOSE To develop an easily-implemented technique with free publicly-available analysis software to measure the modulation transfer function (MTF) and noise-power spectrum (NPS) of a clinical computed tomography (CT) system from images acquired using a widely-available and standardized American College of Radiology (ACR) CT accreditation phantom. METHODS Images of the ACR phantom were acquired on a Siemens SOMATOM Definition Flash system using a standard adult head protocol: 120 kVp, 300 mAs, and reconstructed voxel size of 0.49 mm × 0.49 mm × 4.67 mm. The radial (axial) MTF was measured using an edge method where the boundary of the third module of the ACR phantom, originally designed to measure uniformity and noise, was used as a circular edge. The 3D NPS was measured using images from this same module and using a previously-described methodology that quantifies noise magnitude and 3D noise correlation. RESULTS The axial MTF was radially symmetrical and had a value of 0.1 at 0.62 mm(-1). The 3D NPS shape was consistent with the filter-ramp function of filtered-backprojection reconstruction algorithms and previously reported values. The radial NPS peak value was ∼115 HU(2)mm(3) at ∼0.25 mm(-1) and dropped to 0 HU(2)mm(3) by 0.8 mm(-1). CONCLUSIONS The authors have developed an easily-implementable technique to measure the axial MTF and 3D NPS of clinical CT systems using an ACR phantom. The widespread availability of the phantom along with the free software the authors have provided will enable many different institutions to immediately measure MTF and NPS values for comparison of protocols and systems.
منابع مشابه
Design and Fabrication Process of MTF Phantom CT Scan
Introduction: One of the main steps in the optimization process in diagnostic imaging is the quality control of radiology devices. The usual method of CT scan calibration is used of a phantom. The phantom created a certain weakening for the radiation through which it passes. One of the most suitable methods for quantitative analysis of the resolution and contrast in CT scan im...
متن کاملThe phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: practical tips, artifact examples, and pitfalls to avoid.
The ACR CT accreditation program, begun in 2002, requires the submission of approximately 20 images, several completed data sheets and printouts of three Excel worksheets. The procedure manual is very detailed, yet participants unfamiliar with the program or having minimal CT experience have needed to redo aspects of their submission, or in some cases do not receive accreditation, due to mistak...
متن کاملUsing the ACR CT accreditation phantom for routine image quality assurance on both CT and CBCT imaging systems in a radiotherapy environment
Image-guided radiation therapy using cone-beam computed tomography (CBCT) is becoming routine practice in modern radiation therapy. The purpose of this work was to develop an imaging QA program for CT and CBCT units in our department, based on the American College of Radiology (ACR) CT accreditation phantom. The phantom has four testing modules, permitting one to test CT number accuracy, slice ...
متن کاملImaging performance in differential phase contrast CT compared with the conventional CT–Noise equivalent quanta NEQ(k)
The grating-based x-ray differential phase contrast (DPC) CT is emerging as a new technology with the potential for extensive preclinical and clinical applications. In general, the performance of an imaging system is jointly determined by its signal property (modulation transfer function–MTF(k)) and noise property (noise power spectrum–NPS(k)), which is characterized by its spectrum of noise eq...
متن کاملOne‐year analysis of Elekta CBCT image quality using NPS and MTF
The image quality (IQ) of imaging systems must be sufficiently high for image-guided radiation therapy (IGRT). Hence, users should implement a quality assurance program to maintain IQ. In our routine IQ tests of the kV cone-beam CT system (Elekta XVI), image noise was quantified by noise standard deviation (NSD), which was the standard deviation of CT numbers measured in a small area in an imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 40 5 شماره
صفحات -
تاریخ انتشار 2013